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Via Eudossiana 18, 00184 Rome, Italy

(Received 1 October 2009; revised 2 April 2010; accepted 6 April 2010;

first published online 24 June 2010)

The interaction of a normal shock wave with a turbulent boundary layer developing
over a flat plate at free-stream Mach number M∞ =1.3 and Reynolds number
Reθ ≈ 1200 (based on the momentum thickness of the upstream boundary layer) is
analysed by means of direct numerical simulation of the compressible Navier–Stokes
equations. The computational methodology is based on a hybrid linear/weighted
essentially non-oscillatory conservative finite-difference approach, whereby the switch
is controlled by the local regularity of the solution, so as to minimize numerical
dissipation. As found in experiments, the mean flow pattern consists of an upstream
fan of compression waves associated with the thickening of the boundary layer, and
the supersonic region is terminated by a nearly normal shock, with substantial
bending of the interacting shock. At the selected conditions the flow does not
exhibit separation in the mean. However, the interaction region is characterized
by ‘intermittent transitory detachment’ with scattered spots of instantaneous flow
reversal throughout the interaction zone, and by the formation of a turbulent mixing
layer, with associated unsteady release of vortical structures. As found in supersonic
impinging shock interactions, we observe a different amplification of the longitudinal
Reynolds stress component with respect to the others. Indeed, the effect of the adverse
pressure gradient is to reduce the mean shear, with subsequent suppression of the
near-wall streaks, and isotropization of turbulence. The recovery of the boundary
layer past the interaction zone follows a quasi-equilibrium process, characterized by
a self-similar distribution of the mean flow properties.
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1. Introduction
The interaction of shock waves with turbulence is the subject of extensive research

for its relevance in transonic, supersonic and hypersonic flows. In the transonic regime,
shock wave/turbulent boundary layer interactions (SBLIs) occur in a variety of flows
of practical interest, such as high-speed wings, helicopter blades, turbo-machines,
over-expanded nozzles, launch vehicles during the ascent phase, etc. A fundamental
understanding of the complex physical phenomena involved in such interactions is
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extremely important for the development of improved engineering models and to
attempt to control their detrimental effects. SBLI may indeed be responsible for
loss of efficiency of aerodynamic surfaces, for structural fatigue and severe structural
vibrations associated with unsteady pressure loads, especially in the presence of
flow separation. Models of flow-induced vibration require accurate prediction of
frequency/wavenumber spectra of wall-pressure fluctuations as a forcing input, which
can be achieved by means of high-fidelity unsteady numerical simulations.

Significant advances in the understanding of SBLI have been made in the past
few decades, even though the associated unsteady features and the turbulence-
amplification mechanisms are not yet fully understood. This is especially true
for transonic interactions, which have received comparatively less attention with
respect to their supersonic counterparts, such as impinging shocks and compression
ramps (Dolling 2001). The major problems derive from the difficulties encountered
in both experiments and computations in anchoring the shock wave and from the
strong sensitivity to the downstream (subsonic) flow conditions.

Délery & Marvin (1986), through the analysis of a large amount of experimental
information related to quasi-normal shock/boundary layer interactions in several
configurations (including airfoils, nozzles, bumps), have identified two regimes:
(i) weak interactions, where the flow is not separated in the mean, and (ii) strong
interactions, which are characterized by significant flow separation. In the former
case the shock pattern consists of a fan of compression waves that arise upstream
of the nominal shock impingement point and is terminated by a quasi-normal ‘rear’
shock, which generally brings the flow to subsonic conditions. In the latter case, the
compression waves coalesce to form a leading shock, and a region of supersonic
flow is observed past the rear shock, called a ‘supersonic tongue’ (Seddon 1960). The
intersection of the leading shock with the rear shock causes the formation of a slip
line, and the so-called lambda shock pattern is observed. The general consensus is
that, regardless of the Reynolds number, incipient mean flow separation occurs when
the upstream Mach number is M0 ≈ 1.3. Indeed, as explained by Délery & Marvin
(1986), as the Reynolds number decreases, the interaction length scale increases, and
the compression is spread over a longer distance, thus delaying the separation.

Transonic SBLI in a channel with a wall-mounted bump were experimentally
investigated by Délery (1983) (some data, which will be used in the paper, were also
reported in Délery & Marvin 1986), who considered shock strengths in the range
M0 = 1.3–1.45 and Reθ0

≈ 3000–7500 (Reθ0
being the Reynolds number based on the

momentum thickness at the origin of the interaction), corresponding to conditions
from incipient separation to extensively separated flow. The experiments showed
a differential amplification of the Reynolds stress components, whose maxima were
found to occur well away from the wall. The experiments also revealed the occurrence
of a relaxation process on a very long spatial scale, associated with the persistence of
the vortical structures that are formed through the interaction. Atkin & Squire (1992)
experimentally investigated the steady interaction of a normal shock wave with a
turbulent boundary layer in a straight rectangular channel in the Mach number range
M0 = 1.3–1.55 at Reθ0

≈ 104. The wall pressure was found to increase starting from
approximately 5 δ0 (δ0 being the thickness at the origin of the interaction) ahead of
the shock, and it levelled off to the value predicted by the Rankine–Hugoniot jump
relations at about 70 δ0 past the interacting shock.

Bruce (2008) and Bruce & Babinsky (2008) have carried out an experimental
campaign on forced and unforced transonic SBLI in a rectangular channel, both
with and without control. The steady data at M0 = 1.3, Reθ0

≈ 104 show a pattern
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typical of a weak SBLI, with a compression fan ahead of the main shock, attached
flow throughout the interaction region and the presence of a small supersonic tongue,
associated with recovery shocklets.

A wide body of research on the solution of Reynolds-averaged Navier–
Stokes (RANS) equations is available for a broad variety of flows involving
shock wave/boundary layer interactions, for both two- and three-dimensional
configurations (Davidson 1995; Gerolymos & Vallet 1997; Batten et al. 1999;
Barakos & Drikakis 2000; Leschziner, Batten & Loyau 2000; Leschziner & Drikakis
2002). As a general conclusion, these studies have shown the ability of turbulence
models to capture the mean flow features (such as the pressure loads and the extent
of the interaction region). This is particularly true for second-moment closures, where
the anisotropy is directly taken into account by solving the full Reynolds stress
transport equations. Despite these encouraging results, efforts are still needed to
improve turbulence models, especially for predicting the rapid rise and subsequent
decay of turbulence in the separated shear layer developing past the interacting
shock (Knight et al. 2003; Sandham, Yao & Lawal 2003).

A very limited number of three-dimensional large-eddy simulations (LES) of
transonic SBLI have been reported so far. Sandham et al. (2003) performed LES
(based on the dynamic Smagorinsky model and a synthetic turbulence technique to
force transition to turbulent state) of a transonic turbulent boundary layer over a
circular-arc bump corresponding to an upstream Mach number M0 ≈ 1.16. These
authors concluded that the shock wave is very nearly steady, and the level of
turbulence anisotropy in the flow past the interaction is not substantial. Significant
differences (earlier flow separation, lower peak Mach number) from reference
experiments (Liu & Squire 1988) were reported.

A preliminary attempt to perform a direct numerical simulation (DNS) of transonic
SBLI was undertaken by the present authors (Pirozzoli, Bernardini & Grasso 2007),
who analysed the interaction of a normal shock wave with a supersonic turbulent
boundary layer flow at M∞ = 1.2, Reθ ≈ 800, and found qualitative association between
the amplification of turbulence and noise, and the formation of eddies past the
interaction zone. A quantitative analysis of the pressure field also showed a relation
between the local r.m.s. wall pressure and the maximum Reynolds shear stress in the
wall-normal direction.

The objective of this paper is to investigate transonic SBLI by means of DNS
of the full governing equations. The study focuses in particular on the analysis
of the unsteadiness associated with the development of the vortical structures in
the boundary layer, rather than on the low-frequency unsteadiness that may result
from self-sustained oscillations (global modes) or with time variation of boundary
conditions. To the authors’ knowledge, no other DNS studies of transonic interactions
have appeared in the literature so far. DNS has the capability to provide insight into
the full range of turbulence flow scales and furnish information on any quantity of
interest, like second-moment budgets. Therefore, we expect that the present simulation
can help turbulence modellers by providing a reliable database for the development
of improved models for compressible flows with turbulence out of equilibrium. To
make our analysis as general as possible, we consider a relatively simple geometrical
set-up, whereby the turbulent boundary layer developing over a flat surface is
made to interact with a nominally normal shock wave. This type of interaction
has the merit of isolating the effect of bulk flow compression, thus alleviating
the complicating effect due to streamline curvature, which may lead to the onset
of Goertler instabilities. A normal shock wave with moderate strength (M∞ = 1.3)



364 S. Pirozzoli, M. Bernardini and F. Grasso

is considered, which nominally corresponds to a condition of incipient mean flow
separation.

This paper is organized as follows. The numerical methodology is described in § 2;
the results of the study are presented in § 3, which includes a quantitative analysis of
the mean and statistical properties of the flow field. Concluding remarks are given
in § 4.

2. Numerical strategy
In this paper, we solve the full three-dimensional unsteady Navier–Stokes equations

for a perfect gas cast in conservation form:

∂ρ

∂t
+

∂(ρ uj )

∂xj

= 0,

∂(ρ ui)

∂t
+

∂(ρ uiuj )

∂xj

+
∂p

∂xi

− ∂σij

∂xj

= 0,

∂(ρ E)

∂t
+

∂(ρ Euj + puj )

∂xj

− ∂(σijui − qj )

∂xj

= 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where ρ is the density, ui is the velocity component in the ith coordinate direction
(i = 1, 2, 3), p is the thermodynamic pressure, and

qj = −k
∂T

∂xj

,

σij = 2 µSij − 2
3
µSkk δij

⎫⎬
⎭ (2.2)

are the heat flux vector and the viscous stress tensor, respectively, and Sij = (ui,j +
uj,i)/2 is the rate of strain tensor. The molecular viscosity is assumed to obey
Sutherland’s law, and the thermal conductivity is related to µ through the relation
k = cp µ/Pr (the molecular Prandtl number is assumed to be 0.72). In the analysis
that follows the instantaneous-flow-field variables are decomposed using either the
standard Reynolds decomposition (f = f + f ′) or the density-weighted (Favre)

decomposition (f = f̃ + f ′′), where f̃ = ρf /ρ.
The computational strategy to solve the governing equations is a modification of a

conservative finite-difference approach that has been extensively validated in previous
works both for isotropic decaying compressible turbulence and for wall-bounded
turbulent supersonic flows (Pirozzoli & Grasso 2004, 2006). In the smooth parts of
the flow field the inviscid fluxes are discretized by means of a linear seventh-order
central upstream approximation exploiting local Lax–Friedrichs flux splitting, whereas
a fifth-order weighted essentially non-oscillatory (WENO) reconstruction (Jiang &
Shu 1996) is activated near shock transitions to inhibit spurious Gibbs oscillations. As
proposed by Pirozzoli (2002), the switch between linear and WENO reconstruction is
carried out at the intermediate nodes of the computational mesh on the basis of the
value of the density difference across the neighbouring nodes (�ρj+1/2 = ρj+1 − ρj ).
In particular, the WENO reconstruction is activated whenever the absolute value of
the density difference becomes larger than a suitable threshold value �ρ∗, defined as

�ρ∗

ρ∞
= ε1 +

ε2 − ε1

1 + M20
, (2.3)

where M is the local Mach number, and the constants are set to ε1 = 0.01, ε2 = 0.5.
To avoid spurious shock detection, a low threshold level (�ρ∗/ρ∞ = ε1) is used in
the supersonic part of the flow field, whereas a larger threshold (�ρ∗/ρ∞ = ε2) is
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Figure 1. Assessment of shock sensor. Points where |�ρ| > �ρ∗ are marked as solid
lines and are overlaid on flooded instantaneous density contours (0.75 � ρ/ρ∞ � 1.55, 40
contours).

used in the subsonic part of the boundary layer (which does not support shock
transitions). Such a procedure guarantees that the high-order linear reconstruction
is used throughout the subsonic layer, while the more dissipative shock-capturing
reconstruction is selectively applied to a very limited number of grid points, as shown
in figure 1.

The viscous fluxes are approximated by means of standard second-order central
differences, and time integration is performed by means of a classical four-stage
fourth-order explicit Runge–Kutta algorithm.

2.1. Computational domain

The computational domain employed for the simulation is schematically depicted
in figure 2. The choice of the streamwise extent (Lx) is dictated by the necessity to
accommodate the entire interaction zone, including a large part of the recovery region
past the impinging shock. The selection of the extent in the wall-normal direction
(Ly) is critical to avoid drift of the shock system induced by pressure disturbances
coming from the downstream subsonic part of the domain, and this may prevent the
achievement of a statistically steady state. The size of the computational domain in
the spanwise direction (Lz) has to guarantee that the two-point correlations of all
flow variables fall off sufficiently fast so as not to cause any spurious dynamics. The
computational domain, whose size (Lx × Ly × Lz = 106.8δin × 427δin × 12.8δin , where
δin is the inflow boundary-layer thickness based on the 99 % free-stream velocity)
has been selected through a series of preliminary calculations, is discretized with a
grid consisting of 2561 × 281 × 351 points. The grid points are uniformly spaced in
the spanwise direction, whereas they are mildly clustered in the streamwise direction
around the nominal location of the normal shock wave (xs = 32 δin). The well-resolved
part of the computational domain extends up to x = 64 δin , and an algebraic mapping
is used to progressively stretch the mesh up to the outflow boundary. Grid points are
clustered in the wall-normal direction according to a hyperbolic sine mapping up to
y/δin = 8.5, and then a geometric progression is used up to the upper boundary of the
computational domain. In wall units (based on the friction velocity uτ =

√
τw/ρw and
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Figure 2. Sketch of the computational domain for the analysis of normal shock
wave/boundary layer interaction (axes not to scale). The variable xrec denotes the recycling
station; xref is the reference station used for normalization; xs is the nominal shock location;
δin is the boundary-layer thickness (based on the 99 % free-stream velocity) at the inflow.

the viscous length scale δv = νw/uτ , evaluated immediately upstream of the interaction
zone), the streamwise spacing (�x+) varies between 4.5 and 7.5; the spacing in the
wall-normal direction (�y+) ranges between 1.1 at the wall and 20.1 at y/δin = 8.5,
and the spanwise mesh spacing is �z+ = 5.53. The ratio of the effective mesh spacing,

∆ = (�x · �y · �z)1/3, to the local Kolmogorov length scale η =
√

ρ
−1/2

µ3/4(σ ′
ij u′

i,j )
1/4,

is checked a posteriori to be less than 4.3 throughout the interaction zone.
As shown by Jiménez & Wray (1998) for isotropic turbulence, and confirmed by

Pirozzoli, Bernardini & Grasso (2008) for wall turbulence, the typical size of the
small-scale eddies is (5–6)η, which indicates that all the scales of turbulent motion are
expected to be adequately resolved in the present simulation. This is further confirmed
by the inspection of the energy budgets, to be reported in figure 27. The distribution
of the two-point correlation coefficient of the velocity components is reported in
figure 3 as a function of the spanwise separation (rz) at a station downstream of the
shock. The data reported in the figure do not suggest the occurrence of any apparent
spurious coherence.

2.2. Boundary and initial conditions

A critical issue in the simulation of shock/boundary layer interactions is the
prescription of suitable inflow conditions to guarantee a fully developed turbulent
state of the boundary layer at the shortest possible distance from the inflow. In the
present DNS this is achieved by exploiting a modified version of the original rescaling–
recycling procedure developed by Lund, Wu & Squires (1998), and extended to the
compressible case by Stolz & Adams (2003) and Xu & Martin (2004). The basic idea
consists of extracting a cross-stream slice of the flow field and recycling it to the
inflow, after suitable rescaling. This approach produces a realistic turbulent boundary
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Figure 3. Distribution of the two-point correlation coefficient of velocity components in the
spanwise direction (data taken at x/δin = 53.4). Solid symbols: y/δin = 0.051; open symbols:
y/δin = 1.65. Circles: i = 1; triangles: i = 2; diamonds: i = 3.

layer within a short distance from the inflow, and it allows control of the skin friction
and the thickness of the simulated boundary layer.

The inflow conditions are specified according to

ρ (0, y, z, t) = ρ (y) + ρ ′ (0, y, z, t),

u (0, y, z, t) = u (y) + u′ (0, y, z, t),

v (0, y, z, t) = v (y) + v′ (0, y, z, t),

w (0, y, z, t) = w′ (0, y, z, t),

p (0, y, z, t) = p∞,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.4)

where the mean velocity distribution is prescribed as suggested by Guarini et al.
(2000), the pressure is assumed to be uniform and the mean density is determined
from the Crocco–Busemann integral (White 1974). To avoid numerical ‘drift’
phenomena (Sagaut et al. 2004), the mean field at the inflow is kept constant, and only
density and velocity fluctuations are recycled to the inflow. The rescaling procedure
is applied by dividing the boundary layer into two sublayers: (i) the inner layer
(superscript ‘inn’) where velocity is assumed to scale in wall coordinates (y+ = y/δv)
and (ii) the outer layer (superscript ‘out’) where flow properties scale in outer units
(Y = y/δ, δ being the local boundary-layer thickness). The fluctuation of a generic
quantity (ϕ) is assumed to be a weighted combination of the inner- and outer-layer
fluctuations

ϕ = ϕinn(1 − W (Y )) + ϕout W (Y ), (2.5)

where the weight function W (Y ) is defined as (Lund et al. 1998)

W (Y ) =
1

2

⎧⎪⎪⎨
⎪⎪⎩1 +

tanh

[
α(Y − b)

(1 − 2b)Y + b

]
tanh(α)

⎫⎪⎪⎬
⎪⎪⎭ , (2.6)
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Figure 4. Computed wall pressure spectra at x/δin = 4.3 (——); x/δin = 8.5 (- - - -); x/δin = 12.8
(· · · · ·). The vertical line identifies the frequency (ωrec) that would be typical of phase locking
(if any) associated with the recycling procedure.

with α = 4 and b = 0.2. The inflow density and velocity fluctuations in each sublayer
are rescaled from the recycling station (xrec) according to

ρ ′|inn (0, y+, z, t) = ρ ′ (xrec, y
+, z + Lz/2, t),

u′
i |inn (0, y+, z, t) = γ u′

i (xrec, y
+, z + Lz/2, t),

ρ ′|out (0, Y, z, t) = ρ ′ (xrec, Y, z + Lz/2, t),
u′

i |out (0, Y, z, t) = γ u′
i (xrec, Y, z + Lz/2, t),

⎫⎪⎬
⎪⎭ (2.7)

where γ is the rescaling parameter:

γ =
(uτ

√
ρw)in

(uτ

√
ρw)rec

. (2.8)

To minimize spurious time periodicity that may result from the application of quasi-
periodic boundary conditions in the streamwise direction, the recycling station is set at
xrec = 10.68 δin , and the inflow fluctuations at the spanwise location z are rescaled from
a staggered location (z + Lz/2) at the recycling station (Spalart, Strelets & Travin
2006). Random divergence-free disturbances with maximum amplitude 4 %u∞ are
also added at the inflow to break any remaining symmetry.

To assess the validity of the numerical inflow conditions, in figure 4 we report
the computed two-sided frequency power spectra of the wall pressure, normalized by
the free-stream dynamic pressure (q∞ = 1/2 ρ∞ u2

∞), at various streamwise stations
upstream of the interaction zone (x/δin = 4.3, 8.5, 12.8) as a function of the angular
frequency (ω). All pressure spectra exhibit a maximum at ω ≈ 3 u∞/δin , and have a
shape similar to the one found in low-speed boundary layers (Na & Moin 1998b),
with a low-frequency power-law scaling as ω0.3 and a high-frequency roll-off as ω−5.
No spectral peak associated with phase locking deriving from the recycling procedure
is observed. If present, such a peak would occur at frec ≈ uc/xrec , where uc ≈ 0.8 u∞ is
the typical convection velocity of pressure disturbances inside the boundary layer (Bull
1967), and this would correspond to ωrec ≈ 0.48 u∞/δin (indicated with a vertical line
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Figure 5. Time evolution of the maximum pressure gradient locations at the wall (solid line)
and at the upper boundary (dashed line). The vertical lines indicate the initial and the final
time for the collection of flow samples.

in figure 4). This implies that no significant statistical correlation develops between
turbulent fluctuations at the inflow and the recycling station.

The boundary conditions at the no-slip adiabatic wall are enforced by prescribing
zero wall-normal gradient for temperature and pressure, and homogeneous Dirichlet
boundary conditions for all velocity components. Non-reflecting boundary conditions
are specified both at the outflow and at the upper boundaries to inhibit spurious
reflections of disturbances back into the computational domain (Poinsot & Lele
1992). Periodic boundary conditions are used in the spanwise direction to exploit
homogeneity of the flow.

The flow field is initialized by assuming a mean turbulent boundary layer with
superposed deterministic perturbations mimicking inner- and outer-layer coherent
structures (Pirozzoli et al. 2008). The flow properties are suitably redefined past
the initial shock location by enforcing a jump in density, velocity and pressure
corresponding to a normal shock wave with upstream Mach number M0 = 1.3. The
calculation is advanced in time by monitoring the distribution of the wall friction
coefficient and the position of the maximum pressure gradient at the upper and lower
walls, whose time evolution is reported in figure 5. The use of non-reflecting boundary
conditions, coupled with grid stretching in the streamwise direction, effectively avoids
the feedback of pressure disturbances from the outflow (with subsequent drift of the
interacting shock) over the time interval of the simulation. Indeed, the upper part of
the shock is observed to move by less than one grid cell over the time interval of the
calculation, whereas the location of maximum wall pressure gradient first moves to
the left, due to an upstream influence mechanism, and then starts to oscillate around
a nearly constant value, once statistical steadiness is achieved (after a time interval
T0 u∞/δin ≈ 158). Samples of the flow field are periodically stored at time intervals of
�t u∞/δin ≈ 0.18, up to the final time Tf u∞/δin ≈ 220. The statistical properties of
the flow (convergence of flow statistics up to third order was carefully checked) are
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Me Reθ Reδ2
Reτ Cf δ∗/δ θ/δ H Hi

1.3 1161 932 359 3.90 × 10−3 0.219 0.101 2.18 1.44

Table 1. Properties of incoming boundary layer at the reference station xref =17.3 δin .

Me = ue/ce; Reθ = ρe ueθ/µe; Reδ2
= ρe ueθ/µw; Reτ = ρw uτ δ/µw; Cf = 2τw/(ρe u2

e); H = δ∗/θ ;
Hi = δ∗

i /θi .

determined by taking time averages of the flow samples and assuming homogeneity
in the spanwise direction.

3. Results and discussion
3.1. Characterization of incoming boundary layer

The turbulence statistics and the structure of the incoming flow are first compared to
those of a canonical zero-pressure-gradient (ZPG) boundary layer. For this purpose we
analyse the boundary layer at the reference station xref = 17.3 δin , chosen immediately
upstream of the beginning of the interaction (see figure 2). The global boundary-layer
properties at this location are listed in table 1. The thickness of the boundary layer
(δ) is determined as the point where u = 0.99 ue, and the displacement (δ∗) and
momentum (θ) thicknesses are defined as

δ∗ =

∫ δe

0

(
1 − ρ

ρe

u

ue

)
dy, (3.1)

θ =

∫ δe

0

ρ

ρe

u

ue

(
1 − u

ue

)
dy, (3.2)

where δe is the edge of the rotational part of the flow field, and ue and ρe are the
corresponding ‘external’ mean velocity and density. The ‘incompressible’ boundary-
layer thicknesses (δ∗

i and θi) and the associated shape factor (Hi) are also determined
from (3.1) and (3.2) by setting the density ratio to unity.

The distribution of the Van Driest transformed mean streamwise velocity

uvd =

∫ u

0

(
ρ

ρw

)1/2

du (3.3)

at the reference station is reported in figure 6 in inner scaling, together with the
incompressible boundary-layer DNS data of Wu & Moin (2009) at Reθ =900
(Reτ = 400) and Spalart (1988) at Reθ = 670 (Reτ = 280). The agreement between the
incompressible distributions and the transformed velocity is satisfactory, especially in
the inner layer. A linear scaling, expected in the case of adiabatic boundary-layer
flows (Smits & Dussauge 2006), is recovered for y+ � 5, and a narrow overlap
region, characterized by a nearly logarithmic scaling, is observed for 40 � y+ � 100.
The strength of the wake component, defined as the difference between the Van
Driest velocity and the log-law value at the boundary-layer edge, is found to be
1.18, consistent with the correlations of Fernholz & Finley (1980) at similar values of
Reδ2

= ρe ueθ/µw .
Consistent with Morkovin’s hypothesis (Morkovin 1961), the density-scaled

turbulence intensities (reported in figure 7 in inner (a) and outer (b) coordinates)
match well (especially in the inner layer) with incompressible DNS data (Spalart
1988; Wu & Moin 2009) and low-speed boundary-layer experiments (Erm & Joubert
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Figure 6. Distribution of the Van Driest transformed mean streamwise velocity in inner
scaling at the reference station (xref = 17.3 δin ). Solid line: present DNS; open circles: Wu &
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1991). In particular, the figure shows that the streamwise velocity fluctuation peaks
at about 13 wall units from the wall, where it attains a value of 2.7.

3.2. Mean wall properties

The mean wall pressure (pw) across the interaction zone is compared with the
experimental data of Délery & Marvin (1986) and Bruce (2008). Note that the former
were obtained in a transonic channel with a wall-mounted bump to accelerate the
flow and form a supersonic region terminated by a quasi-normal shock wave. Hence,
due to the presence of the bump, the boundary layer upstream of the shock wave
develops under a favourable pressure gradient, and it exhibits a fuller profile than
in a ZPG boundary layer at the same Reynolds number. As a consequence, the
wall pressure distribution is not constant upstream of the interaction, and
the incompressible shape factor has a relatively small value (see table 2). Because of
the differences in the Reynolds numbers, and the sensitivity of the flow details to the
downstream conditions, comparison with experiments should be interpreted in only
a qualitative sense.

Let the interaction length scale L be defined as the distance between the sonic point
location xs (i.e. the streamwise station where the mean wall pressure equals the critical
pressure) and the origin of the interaction x0 (i.e. the point where the wall pressure
starts to rise and attains the value pw = 1.005 p∞). For weak-to-moderate interactions,
Délery & Marvin (1986) showed that L scales with the upstream boundary-layer
properties according to

L ≈ 70 δ∗
0 (Hi0 − 1) . (3.4)

As observed in table 2, the computed interaction length scale agrees fairly well with
(3.4); the significant deviations observed for the data of Bruce (2008) are presumably
related to three-dimensional effects in the experimental arrangement (Bruce &
Babinsky 2009). Délery & Marvin (1986) also showed collapse of the wall properties



372 S. Pirozzoli, M. Bernardini and F. Grasso

M0 Reθ0
Hi0 L/δ∗

0 L/δ∗
0/(Hi0 − 1) Symbol

DNS 1.3 1215 1.44 28.4 64.5 —
Délery & Marvin (1986) 1.3 7526 1.30 21.0 70.0 �

Bruce (2008) 1.28 11 590 1.36 35.0 97.0 �
Table 2. Interaction parameters for DNS and experiments (the subscript 0 refers to the

origin of the interaction).
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Figure 7. Density-scaled turbulence fluctuations in inner scaling (a) and outer scaling (b) at
the reference station (xref = 17.3 δin ). Lines refer to DNS data: solid line, streamwise component
(i = 1); dotted line, wall-normal component (i = 2); dashed line, spanwise component (i =3).
Symbols: open circles, Wu & Moin (2009); diamonds, Spalart (1988); triangles, Erm & Joubert
(1991).

(at various Re and M) when reported in the scaled interaction coordinates
x∗ = (x − x0)/L, y∗ = y/L. In the following, for comparison purposes, the results are
then reported in terms of x∗, y∗, and we refer to three distinct zones: the upstream ZPG
region (x∗ < 0); the supersonic adverse-pressure-gradient (APG) region (0 � x∗ � 1);
and the subsonic APG region (x∗ > 1).
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The mean wall pressure (see figure 8a) exhibits a sharp rise in the supersonic APG
region, in agreement with experiments, and a milder increase in the subsonic APG
region. The ‘isentropic’ Mach number, i.e. the Mach number corresponding to the
local mean wall pressure through the isentropic relations (see figure 8b) obviously
follows an opposite behaviour, and it compares well with the data of Délery & Marvin
(1986).

3.3. Boundary-layer development

To characterize the spatial evolution of the boundary layer across the interaction
zone we analyse the distributions of the displacement and momentum thicknesses.
Following Garnier, Sagaut & Deville (2002), in (3.1) and (3.2) the edge of the rotational
part of the boundary layer (δe) is defined as the point where the mean spanwise
vorticity becomes less than a suitable threshold value (here set to 0.005 u∞/δin).

The distributions of δ∗ and θ (normalized with respect to their value at the origin
of the interaction) and of the incompressible shape factor (Hi = δ∗

i /θi) are reported
in figure 9 as a function of x∗. Upstream of the interaction Hi varies between
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Figure 9. Evolution of boundary-layer properties across the interaction zone.
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1.44 and 1.5, as in the case of low-Reynolds-number canonical boundary layers (Wu &
Moin 2009). Past the origin of the interaction (x∗ � 0), the displacement thickness
increases, attaining a maximum value of δ∗/δ∗

0 = 4.5 at x∗ ≈ 2.8, whereas the
momentum thickness exhibits a continuous increase, the flow not being separated
in the mean (Délery & Marvin 1986). Due to bulk flow compression, the flow is
retarded (as reflected in a steep rise of Hi), thus leading to the formation of a pair of
inflection points past x∗ ≈ 0.3 (as observed at stations 3–7 in figure 10). The boundary
layer undergoes a relaxation process past x∗ ≈ 1.8, where Hi attains a peak, and this
is not yet completed at the end of the (well-resolved part of the) computational
domain.
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Figure 11. Mean velocity profiles at various streamwise stations, compared with the data
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Comparison of the mean velocity profiles across the interaction zone with
the experimental data of Délery & Marvin (1986) is reported in figure 11. The
discrepancies observed at station 7 are to be ascribed either to differences in the rate
of the relaxation process (which is expected to be slower at lower Reynolds number)
or to differences in the downstream flow conditions.
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Figure 12. Mean fields of pressure p/p∞ (a), density ρ/ρ∞ (b) and Mach number
(c) in the streamwise, wall-normal plane.

3.4. Flow visualizations: mean and instantaneous fields

The iso-contour lines of the mean pressure, density and Mach number are
reported in figure 12, which shows a pattern consistent with previous experimental
observations (East 1976; Délery & Marvin 1986). The shock system consists of the
interacting shock, which is observed to bend significantly while approaching the wall,
and a fan of compression waves originated well upstream of the nominal impingement
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Figure 13. Instantaneous fields of pressure p/p∞ (a) and density ρ/ρ∞ (b) in the streamwise,
wall-normal plane: (a) 44 contour levels, from 0.96 to 1.84; (b) 32 contour levels, from 0.77
to 1.53. Supplementary movie 1 of the pressure field is available at journals.cambridge.org/
flm.

point, and it is terminated by a nearly normal trailing shock. The location of the
wall sonic point nearly coincides with the foot of the rear shock, and the ‘triple
point’ lies at y∗ ≈ 0.9. Downstream of the rear shock the flow is fully subsonic,
and no supersonic tongue is observed. The formation of a mixing layer (associated
with the outermost mean velocity inflection points in figure 10) is also visible in the
mean pressure and density fields, which exhibit a dip past the interaction region at a
distance y∗ = 0.1–0.2 from the wall.

The computed instantaneous pressure and density fields are reported in figure 13 in
the streamwise, wall-normal plane at a given time frame. As observed by Pirozzoli &
Grasso (2006) in the case of an impinging shock/boundary layer interaction at
supersonic Mach number, and by Na & Moin (1998a) for a low-speed turbulent
boundary layer under APG, the instantaneous pressure field highlights the formation
of pressure minima associated with the shedding of eddies that form in the
proximity of the outermost inflection points of the mean velocity profiles. As better
appreciated from inspection of the flow animations, such vortices lift off from the
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wall approximately in the middle of the interaction zone and propagate downstream,
giving rise to a turbulent mixing layer. Sharp density interfaces are also observed
in the outermost part of the boundary layer, separating boundary-layer turbulence
from the outer, essentially inviscid flow, and this becomes more convoluted past the
interaction zone.

For a more complete representation of the flow, in figure 14 we report a three-
dimensional instantaneous view of the SBLI region in terms of iso-surfaces of the
pressure gradient modulus. Such an indicator allows detection at the same time of
compression and expansion zones (for obvious reasons), as well as vortical structures,
corresponding to regions of low pressure. The figure highlights the three-dimensional
nature of the lambda-like interaction pattern, whereby the vortical structures in the
incoming boundary layer cause the spanwise wrinkling of the upstream compression
fan, as observed by Wu & Martin (2007) in the case of a supersonic compression
ramp interaction. Numerous hairpin-shaped vortex loops, which closely resemble
those found in incompressible boundary-layer DNS (Wu & Moin 2009), are observed
both in the ZPG region and past the shock wave.
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3.5. Analysis of flow reversal

The distribution of the average skin friction coefficient Cf = τw/q∞ is shown in
figure 15, where we also report (for the ZPG region) the incompressible skin friction
correlations of Kármán–Schoenherr:

Cf i
= 1/(17.08 (log10 Reθ i)

2 + 25.11 log10 Reθ i + 6.012), (3.5)

and Blasius

Cf i
= 0.026/Reθ

1/4
i . (3.6)

As customary for compressible flows (Hopkins & Inouye 1971), the Van Driest II
transformation is used (here written for an adiabatic wall) to extend the skin friction
correlations to compressible flow conditions

Cf i
= Fc Cf , Reθ i = Fθ Reθ , (3.7)

where

Fc =
T w/T∞ − 1

arcsin2 α
, Fθ =

µ∞

µw

, α =
T w/T∞ − 1√

T w/T∞ (T w/T∞ − 1)
.

Upstream of the interaction, the DNS data fall very close to the Blasius curve,
with deviations of O(5 %) from the Kármán–Schoenherr’s relation. Starting at about
x∗ = 0, the skin friction exhibits a drop, and it attains a minimum in the subsonic
region past the shock (x∗ ≈ 1.8), followed by a slow recovery.

To characterize the intermittency and unsteady separation of the flow, we have
analysed the statistical probability of wall points with locally reversed flow (γ ) and
the instantaneous skin friction coefficient in the wall plane, reported in figures 16
and 17, respectively. According to the classification of Simpson (1989), incipient
detachment (ID) occurs with instantaneous backflow 1 % of the time, intermittent
transitory detachment (ITD) occurs with instantaneous backflow 20 % of the time
and transitory detachment (TD, which in practice coincides with mean detachment)
with 50 % probability of instantaneous backflow. The streamwise distribution of
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Figure 18. Distribution of Clauser’s pressure gradient parameter (β) as a function
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γ , reported in figure 16, shows the occurrence of an extended region with ITD
regime (for 0.4 � x∗ � 3.1), without any mean flow reversal. Such a regime is
characterized by scattered spots of instantaneously reversed flow that exhibit a strong
intermittent character (figure 17). In particular, the streaky pattern typical of the
upstream ZPG boundary layer disappears due to the APG, and flow patches with
negative instantaneous Cf are frequently found starting from the middle of the
interaction zone, and extending well into the recovery region.

3.6. Analysis of flow recovery

The flow past the interacting shock is characterized by an extended region where the
boundary layer rearranges to attain a new equilibrium state. To characterize such
a relaxation mechanism we have in the first instance applied the classical theory of
Clauser (1954). According to Clauser’s analysis, equilibrium states of a boundary
layer are characterized by self-similarity of the velocity defect scaled by the friction
velocity (reported as a function of y/δ), and correspond to regions where the pressure
gradient parameter

β =
δ∗

ρwu2
τ

dpw

dx
(3.8)

is constant. The distribution of β , reported in figure 18, shows that it is (obviously)
zero in the incoming boundary layer, where equilibrium is attained. The pressure
gradient parameter exhibits a sharp increase at the origin of the interaction, attaining
a peak in the middle of the supersonic APG zone, and decreases monotonically
further downstream. Therefore, according to Clauser’s definition, the flow in the
recovery region is not in equilibrium, and the scaled velocity defect profiles (not
reported) do not collapse onto a single curve.

Using a similarity analysis of the RANS equations, Castillo & George (2001) have
proposed that the proper velocity scale for the outer layer is the external velocity
ue, rather than the friction velocity. By introducing a modified pressure gradient
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parameter, defined as

Λ =
δ

ρe u2
e dδ/dx

dpw

dx
= − δ

ue dδ/dx

due

dx
, (3.9)

they suggested that, in the absence of mean flow separation, the admissible equilibrium
states correspond to regions of constant Λ, which also implies a power-law dependence
of the boundary-layer thickness upon the external velocity:

δ ∼ u−1/Λ
e . (3.10)

According to such a definition, most of the experimental data analysed by Castillo &
George (2001) were found to be in equilibrium (in contrast to Clauser’s analysis), and
only three values of Λ were found to be possible: Λ = 0.22 (for APG), Λ = 0 (for
ZPG) and Λ = −1.92 (for favourable pressure gradient). Under such conditions, the
mean velocity defect profiles were found to exhibit reasonable collapse when reported
in the scaling of Zagarola & Smits (1998), i.e. by normalizing the velocity defect by
ueδ

∗/δ.
To verify the occurrence of equilibrium states in the recovery region of the present

DNS, in figure 19 we report the distribution of the external velocity (ue/u∞) as a
function of δ/δin . Bearing in mind (3.10), the figure reveals that the boundary layer
is in equilibrium both in the ZPG region, where Λ ≈ 0, and in the subsonic APG
region, where Λ ≈ 0.22, in excellent agreement with the findings of Castillo & George
(2001). Consistently, the Van Driest velocity defect profiles in the Zagarola & Smits
scaling are found to be self-similar throughout the subsonic APG region (stations 5–7
of figure 20), whereas no collapse is observed in the supersonic APG region (§§ 2–4),
where the boundary layer is out of equilibrium.

3.7. Turbulence statistics

The structural modifications of turbulence upon interaction with the shock system
are analysed in the present section. As a first check, in figure 21 we report the
distributions of the streamwise turbulence intensity at various stations, which show
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Figure 21. Streamwise turbulence intensities at various streamwise stations, compared with
the data of Délery & Marvin (1986). For nomenclature, refer to figure 10.

good agreement with the experimental data of Délery & Marvin (1986) throughout
the interaction zone. Starting from station 3, differences in the fluctuation levels of
about 30 % are found, all the way through the subsonic APG zone (stations 4–7).

The iso-contour lines of the Reynolds stress components ũ′′
i u

′′
j , in the

streamwise/wall-normal plane, are shown in figure 22. (For clarity of representation
the coordinate axes are not to scale.) In the figure we also report the mid-line of the
mixing layer, i.e. the locus of points where the mean shear is maximum. Figure 22
shows a general amplification of Reynolds stresses in the APG region, especially
in the mixing layer, where the shedding of vortical structures occurs, as also found
by Délery (1983), and for supersonic interactions by Adams (2000), Pirozzoli &
Grasso (2006), Wu & Martin (2007) and Touber & Sandham (2009). To get a more
quantitative appreciation, in figure 23 we also report the profiles of the Reynolds
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;
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, where uτref
is the friction velocity at the reference station

(xref = 17.3 δin ). The chained line denotes the mid-line of the mixing layer.

stress components in the wall-normal direction at various streamwise stations. The
figure shows substantially different amplification of the Reynolds stress components
through the supersonic APG region. Specifically, while the streamwise turbulence
intensity is relatively unaffected, the turbulent shear stress and the cross-stream
velocity fluctuations experience an approximately twofold increase with respect to
their upstream levels. For instance, at station 3 (just past the end of the supersonic

APG region), the stress components −ũ′′v′′, ṽ′′v′′ and w̃′′w′′ are amplified by a factor
of about 1.6, 2.2 and 1.9, respectively. In the subsonic APG region (x∗ > 1), where
the mixing layer undergoes a continuous spreading, all Reynolds stress components
undergo a monotonic decay, and their peak locations consistently move away from the
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Figure 23. Reynolds stress tensor components at various streamwise stations.
For nomenclature, refer to figure 10.

wall. The structure parameter −ũ′′v′′/k (not reported) attains values of approximately
0.3 in the ZPG region, dropping to values in the range 0.2–0.3 past the origin of the
interaction.

To better characterize the change in anisotropy of the Reynolds stress tensor
(which is a consequence of the different amplification undergone by its individual
components) in the APG region, we have considered the invariants of the stress
anisotropy tensor

bij =
ũ′′

i u
′′
j

2 k
− 1

3
δij . (3.11)

Since bij has zero trace by definition, a representative picture of the turbulence state
is provided by its second and third invariants:

III = bijbjkbki, II = bijbji . (3.12)

As shown by Lumley (1978), all realizable fields must lie inside the anisotropy
invariant map, whose vertices constitute special states of turbulence. The computed
anisotropy invariant maps at various streamwise stations are reported in figure 24.
In the ZPG region (station 1), a nearly two-component turbulence state is observed
in the proximity of the wall, due to its blocking effect; the maximum anisotropy is
attained in the buffer layer (y+ ≈ 10), with a return to isotropy in the outer layer,
as observed in the case of canonical boundary-layer flow (Pope 2000). Throughout
the APG region (enclosed between stations 2 and 7), turbulence attains a two-
component, axisymmetric state in the immediate vicinity of the wall. In the inner
part of the boundary layer (y/δ � 0.1) the anisotropy of the flow is reduced
with respect to the ZPG state, and most turbulence states fall close to the
line corresponding to the axisymmetric turbulence compression. Due to the APG
experienced through the interaction, the mean shear is reduced, thus promoting
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Figure 24. Anisotropy invariant maps of the Reynolds stress tensor in the boundary layer at
various streamwise locations (refer to figure 10 for nomenclature). Filled circles denote wall
points and arrows indicate the direction of increasing y.

equipartition of turbulence fluctuations in the wall-parallel plane and tendency to
the ‘isotropization’ of turbulence. In the outer region (y/δ � 0.1) turbulence attains
an axisymmetric expansion turbulence state, as observed at the centre of canonical
turbulent mixing layers (Pope 2000). Farther downstream (station 7) turbulence shows
a reversal tendency, experiencing an increase of anisotropy in the near-wall region.
This scenario is qualitatively confirmed by visual inspection of figure 25, where
we report the streamwise velocity field in a wall-parallel plane (at y+ = 10.8 in
wall units evaluated at the reference station xref = 17.3 δin). The figure shows the
presence of elongated streaks with alternating high- and low-speed fluids in the
ZPG region, which penetrate into the APG region, and disappear past x∗ ≈ 0.5.
Farther downstream, turbulence exhibits a more ‘isotropic’ behaviour, and a tendency
for streaks to reform is observed for x∗ � 5. This tendency is also quantitatively
supported by figure 26, where we report the streamwise distribution of the shear

rate parameter S̃ = −(ũ′′v′′ ∂ũ/∂y)/ε (where ε is the dissipation rate of turbulence
kinetic energy, to be defined in (3.18)), at y+

ref = 10.8 (wall units being evaluated at
the reference station). This parameter was introduced by Lam & Banerjee (1992) to
identify the condition of streak formation in a wall-bounded turbulent flow. They
showed that streaks appear when turbulence production due to mean shear exceeds
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viscous dissipation, i.e. when S̃ � 1. Our results indicate that S̃ is nearly constant
(≈1.5) in the ZPG region, and it decays rapidly in the supersonic APG region,
because of the reduction of the mean shear. It then undergoes a gradual recovery in
the subsonic APG region, exceeding unity again towards the end of the computational
domain (x∗ � 5).

3.8. Turbulence kinetic energy budgets

Useful information for improving RANS turbulence models can be gained from
the analysis of the turbulence kinetic energy budgets. The transport equation for

turbulence kinetic energy (k =(1/2) ũ′′
i u

′′
i ) in a compressible flow is cast in the

form (Pirozzoli, Grasso & Gatski 2004)

∂ρk

∂t
= C + T + P + V − ρε + K, (3.13)

where C, T , P , V and ρε, respectively, represent the contributions of mean advection,
turbulent transport, production by mean velocity gradient, viscous diffusion and
viscous dissipation. The term K accounts for the direct effect of compressibility
through pressure–dilatation correlation and mass diffusion. The explicit expressions
for the various terms are as follows:

C = −∂ρũj k

∂xj

, (3.14)

T = − ∂

∂xj

[
1

2
ρ ˜u′′

i u
′′
i u

′′
j + p′u′′

j

]
, (3.15)

P = −ρ ũ′′
i u

′′
j

∂ũi

∂xj

, (3.16)

V =
∂

∂xj

(σ ′
iju

′′
i ), (3.17)

ρε = σ ′
ij

∂u′′
i

∂xj

, (3.18)

K = p′ ∂u′′
i

∂xi

+ u′′
i

(
∂σ ij

∂xj

− ∂p

∂xi

)
. (3.19)

Figure 27 shows the budgets of k (normalized by wall units at the reference station
xref = 17.3δin) at various streamwise positions, as a function of the wall distance;
the compressibility term is not shown in the figure, it being always negligible with
respect to the other ones. Throughout the flow domain the terms on the right-
hand side of (3.19) are balanced with good accuracy (the maximum imbalance
being 6 % throughout the interaction zone), thus confirming the accurate resolution
of the present simulation. In the ZPG region (x∗ = −0.2), the budgets are typical
of a canonical boundary layer, with a balance of production and dissipation in a
large part of the boundary layer. Turbulence transport and viscous diffusion become
significant in the near-wall region, whereas the contribution of advection is negligible.
In the supersonic APG region (x∗ = 0.68) the near-wall budget is similar to that
of a canonical boundary layer, whereas differences are observed away from the
wall (y+

ref � 50), where the advection term (associated with the lift-up of vortical
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Figure 27. Turbulence kinetic energy balance in wall units (taken at the reference station) at
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structures) becomes significant, and it contributes to balance the mean velocity
gradient production. A qualitatively different behaviour is observed in the subsonic
APG region (x∗ = 2.19), where the budget exhibits similarities with an incompressible
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boundary layer under APG (Na & Moin 1998a), and this resembles the canonical
mixing layer budget (Rogers & Moser 1993). In particular the production by mean
velocity gradient peaks at (y+

ref ≈ 400), and it is balanced by turbulent transport and
molecular dissipation.

4. Conclusions
The interaction of a normal shock wave with a turbulent boundary layer at

M∞ = 1.3, Reθ ≈ 1200 has been analysed by means of DNS of the compressible
Navier–Stokes equations. The study has focused on the analysis of the unsteadiness
associated with the development of the vortical structures in the boundary layer, and
detailed flow statistics have been reported, including mean flow properties, turbulent
fluctuations, as well as second-moment budgets.

The DNS data are compared against experimental measurements in transonic
channels, and satisfactory agreement is found for mean pressure, velocity profiles
and turbulence intensities. Consistent with experimental observations, the mean flow
pattern shows bending of the interacting shock, the formation of an upstream fan
of compression waves associated with the thickening of the boundary layer and the
occurrence of a terminating nearly normal shock, which brings the flow to subsonic
conditions. Flow visualization shows that the outer part of the boundary layer is
populated by hairpin-shaped vortical structures, both in the incoming stream and
past the interacting shock, where the mean velocity profile exhibits a pair of inflection
points, and the flow shows similarities with a turbulent mixing layer. Although at the
selected flow conditions no mean separation is observed, the flow is in an ‘ITD’ state,
exhibiting scattered spots of instantaneous flow reversal throughout the interaction
zone.

Three distinct flow regions have been identified: (i) a ZPG region upstream of
the origin of the interaction; (ii) a supersonic APG region, where the interaction
between the shock and boundary-layer turbulence takes place; and (iii) a subsonic
APG region, where the flow relaxes to an equilibrium state.

The analysis of the flow recovery past the interacting shock shows that the boundary
layer reacts to the APG by attaining a new equilibrium state over a scale of the order
of one interaction length. Such an equilibrium state is conveniently described in the
framework of the theory of Castillo & George (2001). In particular, in the subsonic
APG region, a nearly constant value of the pressure gradient parameter is attained,
and the mean velocity defect profiles are very nearly self-similar when reported in the
scaling of Zagarola & Smits (1998).

In the supersonic APG region the main effect of the interacting shock on turbulence
is a general amplification of Reynolds stresses, associated with the formation of
vortical structures along the mid-line of the mixing layer. However, while the cross-
stream velocity fluctuations and the shear stress are significantly amplified, the
streamwise velocity fluctuations are relatively unaffected, resulting in a reduction
of the turbulence anisotropy, whose macroscopic effect is the suppression of the near-
wall streaks of the incoming boundary layer. In the subsonic APG region, a monotonic
decay of all Reynolds stress components is observed, associated with the spreading
of the mixing layer. Low-speed streaks start to reform at a distance of approximately
five interaction length scales past the interacting shock, where turbulence production
by mean shear exceeds viscous dissipation.

This study then confirms the potential of DNS for the understanding of
compressible turbulent flows in APG. Given the relative simplicity of the geometrical
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configuration, we expect that it also provides a useful database for the development
of improved turbulence models. Data are available upon request from the authors.
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